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ABSTRACT 
Solving the inverse heat conduction using Tikhonov regularization requires the selection of an optimal 
smoothing parameter. One popular method for choosing the smoothing parameter is the generalized 
cross-validation method. This method works very well but is computationally expensive. In this paper we 
investigate the L-curve method for selecting an optimal smoothing parameter. This L-curve is easily 
computed and may prove very useful for large systems which preclude other methods. 

KEY WORDS L-curve method Optimal regularization 

INTRODUCTION 

The inverse heat-conduction problem is concerned with the estimation of unknown heat fluxes 
based on measured transient temperature data. This is a very difficult problem and falls into a 
class of problems called ill-conditioned because the solution is extremely sensitive to the noise 
that is always present in the measurements. One very successful approach to these problems is 
to combine several rather abstract mathematical concepts, which, together, produce practical and 
excellent solutions to these problems. These are: 

(1) least squares minimization with regularization (sometimes referred to as Tikhonov's 
method); 

(2) dynamic programming, which provides a very efficient method for solving the regularized 
least squares problem; 

(3) L-curve method or generalized cross-validation to select the optimal regularization 
parameter. 

The use of generalized cross-validation (GCV) to select the regularization parameter has been 
previously investigated by Trujillo and Busby1,2. GCV worked extremely well, but requires the 
computation of the trace of a global solution matrix that relates all of the measurements to the 
estimated temperatures. When dealing with finite element models with thousands of nodes this 
method becomes computationally expensive and impractical. For this reason, the L-curve 
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method, recently proposed by Hansen3, may prove to be very useful. Hanson also indicates that 
for certain types of correlated noise the GCV method may fail while the L-curve will succeed. 
This paper investigates, numerically, the use of the L-curve to select the regularization parameter 
for a finite element inverse heat conduction problem. Two examples are included: a simple 
two-dimensional one with simulated data and an experimental one with real data. A complete 
description of the problem and methods is also included. 

MATHEMATICAL MODEL 

The mathematical model is very general and represents a dynamic system with the following 
vector-matrix difference equation: 

x j+1 = Mxj + Pqj (1) 
where x represents the temperature vector of length n. In our examples, n = 25 and 400, and in 
some practical problems n can easily reach 1000. M is a matrix which represents the dynamics 
of the model, q is a vector of length nq representing the unknown heat fluxes, and P is matrix 
(n x nq) relating the fluxes to the system. Typically, nq is much less than n. A timestep h represents 
the difference between the temperature states xj and x j+1. The timestep also equals the sampling 
increment of the data. 

Measurements 
Now suppose that a series of measurements have been taken and are represented by the 

vectors dj, where the length of dj is m. The number of measurements m is usually much less than 
the number of variables n but greater than nq. These measurements are related to the temperature 
x jby: 

dj ∞ Uxj (2) 
where U is an (m x n) matrix which associates the measurements to the temperature vector. 

Statement of the problem 
The problem is to find the unknowns qj that when used in (1) will force the model to best 

match the measurements represented by (2). It quickly becomes obvious that an exact match 
will not work. This is due to the fact that all measurements have some degree of noise while the 
models, on the other hand, have usually assumed all kinds of derivatives and smoothness. The 
most common method of adjoining the data to the model is with the use of least squares. In 
vector form this is represented with a vector inner product ( · , ·) and would be represented by 
an error sum over all the data points N: 

Even this least squares criteria is not sufficient because a mathematical solution that will minimize 
E will usually end up with the model exactly matching the data. A situation that is to be avoided 
because the inverse problem is ill-conditioned, and the estimated heat fluxes are extremely 
sensitive to the data. This is where the regularization method enters. By adding a term to the 
above least squares error: 
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one can control the amount of smoothness that occurs in the solution by varying the parameter 
b. This method is sometimes referred to as Tikhonov's method. What is now required of the 
solution is to best match the data (the first term of (3)) but to have some degree of smoothness 
(the second term of (3)). This immediately brings up the question of what should be the value 
of the smoothing parameter b. In this paper we will investigate the use of the L-curve method. 

L-CURVE METHOD 

Hansen3 presents the L-curve method in a general linear algebraic setting where one wishes to 
minimize the norm of the residual vector adjoined (via a parameter) with a semi-norm of the 
solution. This is known as Tikhonov regularization. The semi-norm usually represents a 
numerical approximation to the second derivative of the solution. The L-curve is a plot of the 
semi-norm of the solution versus the residual norm. Hansen points out that the practical use of 
this plot was first suggested by Lawson and Hanson4. With some assumptions, Hansen's analysis 
shows that L-curve will depend continuously on the smoothing parameter and that it will always 
have a corner and that a point slightly to the right of the corner estimates the optimal smoothing 
parameter. This corner is most easily seen in a log-log plot. 

In our formulation of the inverse problem the residual norm corresponds to the first term of 
(3) which represents the error in matching the data. The semi-norm of the derivative of the 
solution corresponds to the second term of (3) or alternatively, the derivative of the heat fluxes. 
In a general formulation of the inverse problem, it is possible to replace the regularization term 
with a derivative of the heat fluxes in place of the heat fluxes themselves. This is easily 
accomplished by adjoining the heat fluxes to the state variables and solving for the derivatives 
of the heat fluxes (see Reference 1 for more details). Thus, in our application, the following 
norms will be plotted to produce the L-curves: 

where qj+1 = qj + rj. 

NUMERICAL EXAMPLE 

This example was investigated in Reference I and represents a two-dimensional finite element 
model involving two unknown heat fluxes and two temperature measurements. Figure 1 shows 
the model and the location of the measurements. A 0.4 x 0.8 rectangle was modelled with 25 
nodes and 16 quadrilateral elements. Unit properties were used. The heat fluxes were applied 
to two adjacent sides, with the other sides insulated. The measurements were located at the 
midpoints of the insulated sides. A time increment of 0.01 units was used. A noise level of 0.5 
degrees was added to the simulated measurements, which varied from 0 to 336 degrees. 

The regularization problem was solved using several values of the smoothing parameter b. 
The results are shown in Figure 2 which plots the Fnorm versus the Enorm on log-log scales. The 
L shape characteristic of the curve is indeed present. The values of the smoothing parameter 
are shown for the data in the proximity of the corner. It only remains to validate that the 
optimal value of the smoothing curve does occur at the corner. 
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One advantage of testing methods and theories with simulated data is that one knows the 
answer beforehand. Figure 3 shows a plot of the least squares error between the true heat fluxes 
and the estimated ones for various smoothing parameters. From this Figure, the optimal 
smoothing parameter would be chosen as 0.03. From Figure 2, the corner of the L-curve is 
judged to be at 0.01. The estimated heat fluxes are not extremely sensitive to the parameter and 
either of these values would yield excellent estimates of the heat fluxes. The estimated and true 
heat fluxes are shown in Figures 4 and 5 for the smoothing parameter of 0.01. 

EXPERIMENTAL DATA 

This example is taken from Trujillo and Wallis5 and represents real data. A quenching experiment 
was carried out with an instrumented disk, (10.5 in. diameter x 2.75 in. thick) made from Alloy 
718. The disk was heated to 2150°F in a gas-fired furnace before being transferred to an oil tank 
where it is quenched. An axisymmetric finite element model consisting of 400 nodes (n = 400) 
was used to represent the disk. Ten thermocouples (m = 10) were placed in the disk to capture 
the transient data. The finite element model and the locations of the thermocouples are shown 
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in Figure 6. The model was then used to estimate seven heat flux histories (nq = 7) around the 
perimeter of the disk. The thermocouples were sampled every 2 sec for a total of 180 points 
(N = 180). Also, this problem is non-linear because of the temperature dependence of the 
thermodynamic properties of the metal. 

The L-curve was constructed by solving the regularization problem using several values of 
the smoothing parameter b. The results are shown in Figure 7 which plots the Fnorm versus the 
Enorm on a log-linear scale. For this case the Enorm did not vary much in magnitude. However, 
the L shape characteristic of the curve is indeed present. Since this case represents real data 
there is no 'true' answer to help evaluate the performance of the L-curve, but the point slightly 
to the right of the corner value ( b = 1 x 105) corresponds very well to the value of the smoothing 
parameter that was chosen5 based on experience and intuition. Four of the seven estimated heat 
fluxes are shown in Figure 8. These heat fluxes are for the center region of the disk, both top 
and bottom. 
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DISCUSSION 

The results of the above examples gives one confidence that the L-curve is indeed a good method 
for selecting the optimal smoothing parameter. As Hansen indicates, the L-curve and generalized 
cross-validation would give the same parameter for most cases with white noise and even with 
filtered white noise. The main advantage of the L-curve method is that it can be plotted with 
readily available information, while constructing the GCV curve requires some additional 
computations. Thus, in computer programs that solve very large models the L-curve method is 
the only available practical method as was the case for the experimental model with 400 nodes 
and seven unknown heat fluxes. 
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